COT 6405 Introduction to Theory of
Algorithms

Topic 4. Recurrences

8/29/2016

Recurrences

 What is a recurrence?

— An equation that describes a function in terms of
its value on smaller functions

* The time complexity of divide-and-conquer
algorithms can be expressed as recurrences

s(n) :{

T'(n)=-

21|

Recurrence Examples

0 n=0

c+s(n=1) n>0

E]‘FC n>l1

2

T'(n) =+

al
3

0 n=0
s(n=1) n>0
c n=1

n
—)Jrcn n>1

Solving the recurrences

e Substitution method
e Recursion Tree
e Master method

Substitution method

* The substitution method comprises two steps:
— 1. Guess the form of the solution

— 2. Use mathematical induction to show the
correctness of the guess

Example:

I ith =1,

Tin) = {ZTM,?Z)—I—H itn > 1.

|. Guess: T(n) = nlgn + n. [Here, we have a recurrence with an exact func-
tion, rather than asymptotic notation, and the solution is also exact rather than
asyvmptotic. We'll have to check boundary conditions and the base case. |

2. Induction:
Basisin =1 = nlgn4+n=1=T(n)
Inductive step: Inductive hypothesis is that T (k) = klgk + k forall £ < n.
We'll use this inductive hypothesis for T (r/2).
T(n) = 2T (g) +n
n n R
= 2 (— lg — + —) +n (by inductive hypothesis)
2 72 2 i i
lg = +n+
= nlg—4+n+4n
=2
n(lgn—l1g2)y+n4+n
nlgpn—n+n+n

= nlgn+n.]

Substitution method (cont’d)

 We generally express the solution by
asymptotic notations

 We don’t worry about boundary cases, nor do
we show base cases in the substitution proof.
— because we are ultimately interested in an

asymptotic solution to a recurrence, it will always
be possible to choose base cases that work.

Example: T (n) = 2T (n/2)+®(n). If we want to show an upper bound of T'(n) =
21 (n/2) + O(n), we write T'(n) < 2T (n/2) + cn for some positive constant c.

|. Upper bound:

Guess: T(n) < dnlgn for some positive constant d. We are given ¢ in the
recurrence, and we get to choose d as any positive constant. It’s OK for d to

depend on c.
ess T(n) =0 (nlgn)
ve: T(n) = O(nlgn) and Q(nl

Substitution:
I'(ny < 2T(n/2)+cn

< Q(dglg%)-l—cn

dnlg % + cn

dnlgn—dn+cn

< dnlgn if —dn+cn < 0,
d

|V

2. Lower bound: Write T (n) = 2T (n/2) + cn for some positive constant c.

Guess: T (n) = dnlgn for some positive constant d.

Substitution:
T(n) = 2T (n/2)+cn
n n ss T(n) = O(nlgn)
> 2 (di lg E) Ton e: T(n) = O(nlgn) and Q(nl

A

n
dnlg;—}—cn
dnlgn —dn+cn

dnlgn if —dn 4+ cn
d

IA TV

Therefore, T'(n) = Q(n lgn).

Therefore, T'(n) = O(nlgn). [For this particular recurrence, we can use d = ¢ for
both the upper-bound and lower-bound proofs. That won't always be the case.] =

Substitution method

 For the substitution method:

— Show the upper and lower bounds separately.
* Might need to use different constants for each.

 Making a good guess

— Unfortunately, there is no general way to guess
the correct solutions to recurrences.

— Takes experience and creativity.

Make sure you show the same exact form when doing a substitution proof.

ss T(n) = O(n3)
e: T(n) = O(n3) and Q(n3)

Consider the recurrence

T(n) =8T (n/2) + O(n*) .

For an upper bound:

T (n) < 8T (n/2) + cn’.

Guess: T(n) < dn’.

T(n) < 8d(n/2) +cn’
= 8d(n’/8) + cn?
= dn’ +cn’

P dn’ doesn’t work!

How to fix this?

11

Remedy: Subtract off a lower-order term.

Guess: T(n) < dn° —d'n*.

I'(n)

<7

| A

8(d(n/2)° —d'(n/2)%) + cn’

8d(n’ /8) — 8d'(n*/4) + cn”

dn® —2d'n* + cn?

dn® —d'n* —d'n* + cn®

dn® —d'n’ if —d'n* + cn?
7

IV TA

0,

12

Avoiding Pitfalls

* |tis easy to err in the use of asymptotic
notation

e Solve T(n) =2T(n/2) + ©(n)

* Guess: T(n) = 0O(n) and T(n) < dn for some
positive constant number d

* Induction: T(n) < 2T(n/2) + cn

< 2(d(n/2)) + cn

< dn +cn = (d+c)n = O(n)
Why wrong?

Changing variables

 Sometimes, a little algebraic manipulations can make
an unknown recurrence similar to one you have seen
before.

* Solve the recurrence T(n) = 2T (\n) + lgn
— Renaming m = Ign yields T(2™) = 2T (2™/2) + m

— We can now rename S(m) = T(2™) to produce the
new recurrence S(m) = 25(m/2) + m

—S(m) = O(mlgm)
—T(n)=T(2™) =S(m) =0 (mlgm) = O(lgnlglgn)

Recursion tree method

* How to solve the recurrence of merge sort?

* By using substitution method, we can have
—T(n) =2T(n/2) + n
=2(2T(n/4) + n/2) + n
=4T(n/4) + 2n

Recursion tree method (cont’d)

* An alternative approach: draw a tree to
diagram all the recursive calls that take place

T(n) =2T(n/2) + n

* For the original problem, we have a cost of n,
plus the two subproblems, each costing n/2

Constructing the tree

n

n/2 n/2
O\ SN

n/4 n/4 n/4 n/4

For each of the size-n/2 subproblems, we have a
cost of n/2, plus two subproblems, each costing
n/4

8/29/2016

8/29/2016

Constructing the tree (cont’d)

T~

n/2

O

/
n/2
N
|gn n/4 n/4
L
/

n/4

n/4

19

Constructing the tree (cont’d)

[e .20 ¥ n

T .

n/z n/z > 21 * E
Ign N <N n
n/4 n/4 n/4 n/4 ,22*?

/
’/ >Zlg‘rwco
T(1)

8/29/2016 20

Computing the cost

 We add up the costs over all levels to
determine the cost for the entire tree

* T(n) = 2% xn +21*§ +22*23+ + 294

= nlgn = O(nilgn)

N e 2041
/ ~_)
n/z n/2 21 4 E
I"I/4 n/4 n/4 n/4 22*?
/
/Zlgn*o
T(1)

Example
* Solve T(n) = 3T(n/4) + cn?

cn?

e

c(%)? c(3)? c(3)?
Sl N N N
c(3? | c? | e’ (39 cl3g? | g’ | i)
..... % L
z \
T(1) | T(1) | T(2) | T(2) e T(1) | T(1) | T(1) | T(1)

8/29/2016

Example(cont’d)

* The su.bproblem size for a node at depth i
isn/4

* The subproblem size hits T(1), when n/4! =1,
ori = log,n

* Thus, tree has 1+log, n levels (i=0,1,...1og, n)

m
— T
o)? c(3)? o)
el D NS T N DN
(107 | dg? | i | di)? | d? e? | elg? | d? | el
_____ : »
/ \

Example(cont’d)

» Each node at level i has a cost of c(n/4")?
* Each level has 3! nodes

» Thus, the total cost of level i is 3'c(n/4")? =

2 [
cn®(3/16) 2
B
cl=)Z o2y oy
c{%)2 c[l—?;ﬁ c(%)Z c(l—n&)z 5{3_6)2 c{%)z c(%}z C(1_116)2 c(%)?-

..................

Example(cont’d)

 The bottom level has 31084 ™ = nlo84 3o des,
each costing T(1)

 Assume T(1) is a constant. The total cost of the
bottom level will be

T(l) nlog4 3 _ @(nlog4 3)

Total cost

* The total cost of level i is cn?(3/16)!

* The total cost of the bottom level ©(n!°8+ 3)

 We add up the costs over all levels to
determine the total cost for the entire tree:

3)log4 n—1

T(n) = cn? +—cn +()ch + - +(16

cn? + 0(nlo8s 3)

_ 21084 n- 1(136)icn2 +@(nlog4 3)

(i)log4 ‘n—1_1
_\16 - cn’ i @(nlog4 3)

16

How to simplify the answer

T(n) = £,28 "1 (=)ien? +0(nlo8+3)

= Zi=o(_)lC7’l +0(nlo8s 3)

= 13 cn? + 0(nlo843) =

1——
16

= 0(n?)

:cn +0(nlo8s 3)

How to simplify the answer
(cont’d)
* On the other hand,
T(n) = 3T(n/4) + cn? > cn?
Thus, T(n) = Q(n?) and we conclude that
T(n) = ©(n?)
How to use substitution method to verify?

Exercise

* Solve T(n) = aT(n/b) + f(n)

8/29/2016

Exercise (cont’d)

30

Exercise (cont’d)

* The subproblem size for a node at depth i
isn/bt

* The subproblem size hits T(1), when n/b* =1,
ori = logyn

* Thus, tree has 1+log;, n levels (i=0,1,...10g, n)

Exercise (cont’d)

e Each node at level i has a cost of f(n/bi)

 Each level has a! nodes

— Level 0: 1, level 1: a, level 2: a?, level 3: a?....

* Thus, the total cost of level i is a*f(n/b)

Exercise (cont’d)

 The bottom level has a!°8p ™ = nl98b 2npdes,
each costing T(1)

 Assume T(1) is a constant. The total cost of the
bottom level will be

T(l)nlogb a_ @(nlogb a)

Exercise (cont’d)

 We add up the costs over all levels to
determine the total cost for the entire tree:

T(n) = f(n) + af(n/b)+a?f(n/b?) + --- + a'°8v "~ 1f(n /o8> "~1) 4+ @(nlo8>» 2)

= Y.28 " qif(n/bl) +0(nlo8n)

