
COT 6405 Introduction to Theory of
Algorithms

Topic 4. Recurrences

8/29/2016 1

Recurrences

• What is a recurrence?

– An equation that describes a function in terms of
its value on smaller functions

• The time complexity of divide-and-conquer
algorithms can be expressed as recurrences

8/29/2016 2

Recurrence Examples

8/29/2016 3

Solving the recurrences

• Substitution method

• Recursion Tree

• Master method

8/29/2016 4

Substitution method

• The substitution method comprises two steps:

– 1. Guess the form of the solution

– 2. Use mathematical induction to show the
correctness of the guess

5

Substitution method

6

Substitution method (cont’d)
• We generally express the solution by

asymptotic notations

• We don’t worry about boundary cases, nor do
we show base cases in the substitution proof.

– because we are ultimately interested in an
asymptotic solution to a recurrence, it will always
be possible to choose base cases that work.

7

8

Guess T(n) = Θ 𝑛𝑙𝑔𝑛
Prove: T(n) = O(nlgn) and Ω(𝑛𝑙𝑔𝑛)

≤

9

Guess T(n) = Θ 𝑛𝑙𝑔𝑛
Prove: T(n) = O(nlgn) and Ω(𝑛𝑙𝑔𝑛)≥

Substitution method

• For the substitution method:

– Show the upper and lower bounds separately.

• Might need to use different constants for each.

• Making a good guess

– Unfortunately, there is no general way to guess
the correct solutions to recurrences.

– Takes experience and creativity.

10

11

How to fix this?

Guess T(n) = Θ(𝑛3)
Prove: T(n) = O(𝑛3) and Ω(𝑛3)

12

Avoiding Pitfalls

• It is easy to err in the use of asymptotic
notation

• Solve T(n) = 2T(n/2) + Θ(n)

• Guess: T(n) = O(n) and T(n) ≤ dn for some
positive constant number d

• Induction: T(n) ≤ 2T(n/2) + cn

≤ 2(d(n/2)) + cn

≤ dn + cn = (d+c)n = O(n)

Why wrong?
8/31/2016 14

Changing variables

• Sometimes, a little algebraic manipulations can make
an unknown recurrence similar to one you have seen
before.

• Solve the recurrence 𝑇 𝑛 = 2𝑇(𝑛) + 𝑙𝑔𝑛

– Renaming m = 𝑙𝑔𝑛 yields 𝑇(2𝑚) = 2𝑇(2𝑚/2) + m

– We can now rename S(m) = 𝑇 2𝑚 to produce the
new recurrence 𝑆(𝑚) = 2𝑆(𝑚/2) + m

– S(m) = Θ(𝑚𝑙𝑔𝑚)

– T(n) = 𝑇(2𝑚) = S(m) = Θ(𝑚𝑙𝑔𝑚) = Θ(𝑙𝑔𝑛𝑙𝑔𝑙𝑔𝑛)

8/29/2016 15

Recursion tree method

• How to solve the recurrence of merge sort?

• By using substitution method, we can have

– T(n) = 2T(n/2) + n

= 2(2T(n/4) + n/2) + n

= 4T(n/4) + 2n

= …….

8/29/2016 16

Recursion tree method (cont’d)

• An alternative approach: draw a tree to
diagram all the recursive calls that take place

T(n) = 2T(n/2) + n

• For the original problem, we have a cost of n,
plus the two subproblems, each costing n/2

8/29/2016 17

Constructing the tree

8/29/2016 18

n

n/2 n/2

n/4 n/4 n/4 n/4

For each of the size-n/2 subproblems, we have a

cost of n/2, plus two subproblems, each costing

n/4

Constructing the tree (cont’d)

8/29/2016 19

n

n/2 n/2

n/4 n/4 n/4 n/4

T(1)

……

lgn

Constructing the tree (cont’d)

8/29/2016 20

n

n/2 n/2

n/4 n/4 n/4 n/4

T(1)

……

lgn

20 ∗ 𝑛

21 ∗
𝑛

2

2𝑙𝑔𝑛*0

22 ∗
𝑛

22

Computing the cost
• We add up the costs over all levels to

determine the cost for the entire tree

• 𝑇 𝑛 = 20 ∗ 𝑛 + 21∗
𝑛

2
+22 ∗

𝑛

22
+…….+ 2𝑙𝑔𝑛∗ 0

= nlgn = Θ(𝑛𝑙𝑔𝑛)

8/29/2016 21

Example
• Solve T(n) = 3T(n/4) + c𝑛2

8/29/2016 22

c𝑛2

c(
𝑛

4
)2 c(

𝑛

4
)2 c(

𝑛

4
)2

c(
𝑛

16
)2 c(

𝑛

16
)2 c(

𝑛

16
)2 c(

𝑛

16
)2 c(

𝑛

16
)2 c(

𝑛

16
)2 c(

𝑛

16
)2 c(

𝑛

16
)2 c(

𝑛

16
)2

T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1)

…… ……

……

……

Example(cont’d)

• The subproblem size for a node at depth i
is 𝑛/4𝑖

• The subproblem size hits T(1), when 𝑛/4𝑖 = 1,
or 𝑖 = log4 𝑛

• Thus, tree has 1+log4 𝑛 levels (i = 0,1,…log4 𝑛)

8/29/2016 23

Example(cont’d)

• Each node at level i has a cost of c(𝑛/4𝑖)2

• Each level has 3𝑖 nodes

• Thus, the total cost of level i is 3𝑖c(𝑛/4𝑖)2 =
c𝑛2(3/16)𝑖

8/29/2016 24

Example(cont’d)

• The bottom level has 3log4 𝑛 = 𝑛log4 3nodes,
each costing T(1)

• Assume T(1) is a constant. The total cost of the
bottom level will be

T(1) 𝑛log4 3 = Θ(𝑛log4 3)

8/29/2016 25

Total cost

• The total cost of level i is c𝑛2(3/16)𝑖

• The total cost of the bottom level Θ(𝑛log4 3)

• We add up the costs over all levels to
determine the total cost for the entire tree:

T(n) = c𝑛2+
3

16
c𝑛2+(

3

16
)2c𝑛2 +⋯+

3

16

log4 𝑛−1
c𝑛2 + Θ(𝑛log4 3)

= σ𝑖=0
log4 𝑛−1(

3

16
)𝑖c𝑛2 +Θ(𝑛log4 3)

=
3

16

log4 𝑛−1
−1

3

16
−1

c𝑛2 + Θ(𝑛log4 3)

8/29/2016 26

How to simplify the answer

T(n) = σ𝑖=0
log4 𝑛−1(

3

16
)𝑖c𝑛2 +Θ(𝑛log4 3)

≤ σ𝑖=0
∞ (

3

16
)𝑖c𝑛2 +Θ(𝑛log4 3)

=
1

1−
3

16

c𝑛2 + Θ(𝑛log4 3) =
16

13
c𝑛2 +Θ(𝑛log4 3)

= O(𝑛2)

8/29/2016 27

How to simplify the answer
(cont’d)

• On the other hand,

T(n) = 3T(n/4) + c𝑛2 ≥ c𝑛2

Thus, T(n) = Ω(𝑛2) and we conclude that

T(n) = Θ(𝑛2)

How to use substitution method to verify?

8/29/2016 28

Exercise

• Solve T(n) = aT(n/b) + f(n)

8/29/2016 29

Exercise (cont’d)

8/29/2016 30

f(n)

f(
𝑛

𝑏
)

T(1)

……

……

……

……

f(
𝑛

𝑏2
) ……

Exercise (cont’d)

• The subproblem size for a node at depth i
is 𝑛/𝑏𝑖

• The subproblem size hits T(1), when 𝑛/𝑏𝑖 = 1,
or 𝑖 = log𝑏 𝑛

• Thus, tree has 1+log𝑏 𝑛 levels (i = 0,1,…log𝑏 𝑛)

8/29/2016 31

Exercise (cont’d)

• Each node at level i has a cost of f(𝑛/𝑏𝑖)

• Each level has 𝑎𝑖 nodes

– Level 0: 1, level 1: a, level 2: 𝑎2, level 3: 𝑎3….

• Thus, the total cost of level i is 𝑎𝑖f(𝑛/𝑏𝑖)

8/29/2016 32

Exercise (cont’d)

• The bottom level has 𝑎log𝑏 𝑛 = 𝑛log𝑏 𝑎nodes,
each costing T(1)

• Assume T(1) is a constant. The total cost of the
bottom level will be

T(1)𝑛log𝑏 𝑎= Θ(𝑛log𝑏 𝑎)

8/29/2016 33

Exercise (cont’d)
• We add up the costs over all levels to

determine the total cost for the entire tree:

T(n) = f(n) + af(𝑛/𝑏)+𝑎2f(𝑛/𝑏2) +⋯+ 𝑎log𝑏 𝑛−1f(𝑛/𝑏log𝑏 𝑛−1) + Θ(𝑛log𝑏 𝑎)

= σ𝑖=0
log𝑏 𝑛−1𝑎𝑖f(𝑛/𝑏𝑖) +Θ(𝑛log𝑏 𝑎)

8/29/2016 34

